
Ozone and HO_x Generation in Oxidation Flow Reactors

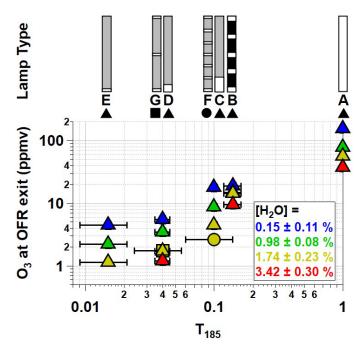
Researchers from Aerodyne Research Inc., University of Colorado at Boulder, and Pennsylvania State University Investigate the Effect of Varying λ = 185 and 254 nm Photon Flux Ratio on Radical Generation In Oxidation Flow Reactors

Edited from a write-up provided by Andrew Lambe of Aerodyne Research Inc.

The Problem: Oxidation flow reactors (OFRs) complement environmental smog chambers as a portable, low-cost technique for exposing atmospheric compounds to oxidants such as ozone (O₃), nitrate (NO₃) radicals, and hydroxyl (OH) radicals. OH is most commonly generated in OFRs via photolysis of externally added O₃ at λ =254 nm (OFR254) or combined photolysis of O₂ and H₂O at λ =185 nm plus photolysis of O₃ at λ =254 nm (OFR185) using low-pressure mercury (Hg) lamps. Whereas OFR254 radical generation is influenced by [O₃], [H₂O], and photon flux at λ =254 nm (I_{254}), OFR185 radical generation is influenced by [O₃], [H₂O], and photon flux at λ =254 nm (I_{254}), OFR185 radical generation is influenced by [O₂], [H₂O], I_{185} , and I_{254} . Because the ratio of photon fluxes, I_{185} : I_{254} , is OFR-specific, OFR185 performance varies between different systems even when constant [H₂O] and I_{254} are maintained. Thus, calibrations and models developed for one OFR185 system may not be applicable to another.

The Solution: To investigate these issues, we conducted a series of experiments in which I_{185} : I_{254} emitted by Hg lamps installed in a Potential Aerosol Mass OFR (Aerodyne Research, Inc.) was systematically varied by fusing multiple segments of lamp quartz together that either transmitted or blocked λ =185 nm radiation (Figure 1). Lamp type A is an ozone-producing low-pressure Hg germicidal fluorescent lamp in which type 214 quartz that transmits λ =185 and 254 nm radiation is present along the entire 356 mm arc length. This lamp type is a standard component of the Aerodyne PAM OFR. The relative transmissivity of λ =185 nm radiation (T_{185}) in lamp type A is thus equal to 1. Lamp type B is equivalent to lamp type A with added segments of opaque heat shrink tubing applied to approximately 86 % of the arc length ($T_{185}\approx$ 0.14) to reduce I_{185} and I_{254} to levels below what is achievable using the ballast dimming voltage.

Figure 1. Low-pressure Hg fluorescent lamp types used in this study. Each lamp type contains 356 mm of quartz material that either transmits both λ =185 and 254 nm radiation (white,T₁₈₅=1), blocks λ =185 nm and transmits λ =254 nm radiation (grey,T185=0), or blocks both λ =185 and 254 nm radiation (black,T185=0).


A different type of quartz is available (type 219) that blocks λ =185 nm and transmits λ =254 nm radiation (T_{185} =0). To cover the largest possible range of I_{185} : I_{254} , lamp types C, D, and E fused one segment each of quartz with $T_{185}=0$ and $T_{185}=1$ to provide reduced I₁₈₅ relative to lamp type A while maintaining constant *I*₂₅₄. Finally, to evaluate the effect of lamp design at fixed T_{185} and I_{254} , lamp types F and G contain the same ratios of $T_{185}=0$ and T_{185} =1 guartz as types C and D, but with 5 and 13 total segments instead of 2 segments. These different designs isolate the effect of discretized λ =185 nm irradiation across the entire arc length of the lamp vs. having all λ =185 nm radiation

near the entrance of the OFR. For each lamp type, a fluorescent dimming ballast was used to systematically vary the UV intensity in the reactor.

Radical generation was initiated from photolysis of H₂O and O₂ at λ = 185 nm and photolysis of O₃ at λ = 254 nm according to the reactions:

 $\begin{array}{l} H_2O + hv_{185} \rightarrow H + OH \\ H + O_2 \rightarrow HO_2 \\ O_2 + hv_{185} \rightarrow 2O({}^{3}P) \\ O({}^{3}P) + O_2 \rightarrow O_3 \\ O_3 + hv_{254} \rightarrow O_2 + O({}^{1}D) \\ O({}^{1}D) + H_2O \rightarrow 2OH \end{array}$

Figure 2. O₃ mixing ratio generated using OFR185 at I_{254} =(3.5±0.7)×10¹⁵ photons cm⁻² s⁻¹ (lamp types A and C–G) and I_{254} =5.8×10¹⁴ photons cm⁻² s⁻¹ (lamp type B) as a function of T_{185} and [H_2 O]. Error bars represent ±1 σ of replicate O₃ measurements and ±2 mm uncertainty in lengths of individual T_{185} =0 and 1 segments.

Across all experiments, [H₂O] ranged from 0.03 % (1 % RH at 25.3 °C) to 3.9 % (88 % RH at 30.9 °C). The integrated OH exposure (OH_{exp}), defined here as the product of the average OH concentration and the mean OFR residence time (τ_{OFR}), was characterized by measuring the decay of carbon monoxide and/or sulfur dioxide tracers. The O₃ mixing ratio at the exit of the OFR was measured with a UV ozone analyzer (106-M, 2B Technologies).

Results: Figure 2 shows $[O_3]$ measured at the exit of the OFR as a function of T₁₈₅ with each lamp type operated at maximum UV output. At fixed [H₂O], $[O_3]$ increased as a function of T₁₈₅ due to faster O₂ photolysis at $\lambda = 185$ nm. At fixed T₁₈₅ and I₂₅₄, $[O_3]$ decreased with increasing [H₂O] due to faster O(¹D)+H₂O reaction rate following O₃ photolysis at $\lambda = 254$ nm.

At $[H_2O]=1.74$ % and $T_{185}=0.04$ and 0.1, Fig. 2 shows that $[O_3]$ generated using lamp types D and G was approximately 1.7 and 1.8 ppmv; here, lamp type D had one 15 mm quartz segment with $T_{185}=1$, whereas lamp type G had three 5 mm quartz segments with $T_{185}=1$. Thus, we hypothesize that the OFR-volume-averaged I_{185} is sufficient to describe associated HO_x production for these cases.

Taken together, these measurements were used to develop a set of empirical OH_{exp} estimation equations that parameterized OH_{exp} as a function of OH reactivity, $[H_2O]$, $[O_3]$, τ_{OFR} , and I_{185} : I_{254} . This approach provides a simpler alternative than detailed photochemical models for experimental planning and analysis. Future work will investigate the sensitivity of NO_x -dependent, OH-initiated oxygenated volatile organic compound and secondary organic aerosol formation processes to I_{185} : I_{254} .

Click here to view the full paper:

https://acp.copernicus.org/articles/20/13417/2020/

www.twobtech.com

The 2B Tech Instrument's Role: The Model 106-M was used to measure the ozone mixing ratio at the OFR exit produced by each of the different types of lamps. The instrument's wide measurement range of 0-1,000 ppm allowed for one

The Model 106-M Ozone Monitor

instrument to be used to measure the vastly different ozone output from each of the lamps. The high accuracy of the Model 106-M enabled the researchers to be completely confident in reaching their conclusions about [O₃] either increasing or decreasing depending on which experimental variables were held constant.

The Bottom Line: If you have an industrial application that requires ozone measurements with high accuracy and precision, then the Model 106-M is right for you. With a measurement range of 0-1,000 ppm the instrument is widely used for university research studies, to measure ozone off-gas in water treatment plants, in food sanitation/cold storage applications, and in various other industrial processes. The instrument can either be provided in a benchtop enclosure for laboratory studies, in an Industrial/NEMA wall-mount enclosure for

water treatment and other industrial applications, or as an OEM for integration into an existing system. All versions of the Model 106-M are provided with relays, have various data output options (RS232, USB, 0-2.5 V, 4-20 mA), and have the ability to provide ozone measurements with a fast response time (4 seconds). Please Contact 2B Technologies to discuss using the Model 106-M for your application.

